IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

On GPR-Compactness in topological spaces

*1Dattatreya Hegde and *2 Mahesh Bhat

*Assistant professor Department of Mathematics, G.F.G.C.Sirsi ,Karnataka ,India -581401

**Assistant professor Department of Mathematics,S.D.M.College , Honnavar ,Karnataka ,India -581334

Abstract: The purpose of this paper to introduce a new class of continuous functions like GPR-compactness functions and study some of their properties.

Key words: GPR-continuity, gpr-continuity, gpr-continuous, ect.

I. INTRODUCTION

Maki et al [5,6] defined α -generalized closed sets and the notion of generalized preclosed set (briefly gp closed) sets in topological which are weaker forms of closed it is observed that every α g-closed set is gp-[2] first defined a new closed set using regular-open set known as generalized pre regular closed. Palaniappan and Rao [8] defined the notion of regular generalized (briefly rg-closed) Gnanambal closed set (briefly gpr-closed). In this chapter we study the properties of gpr-closed sets and gpr-continuous functions

II PRELIMINARIES:

Throughout this dissertation work (X, τ) , (Y, σ) and (Z,η) represent non-empty topological spaces on which no separation axioms are assumed unless explicitly stated, and they are simply written X, Y and Z respectively. For a subset A of (X, τ) , the closure of A, the interior of A with respect to τ are denoted by cl(A) and int(A) respectively. The complement of A is denoted by A^c . The α -closure of A is the smallest α -closed set containing A and this is denoted by $\alpha cl(A)$.

Definition: A subset A of a topological space (X, τ) is called a

- 1. semi-open set [3] if $A \subseteq cl(int(A))$ and semi-closed set if int $(cl(A)) \subseteq A$.
- 2. pre-open set [4] if $A \subseteq int(cl(A))$ and pre-closed set if $cl(int(A)) \subseteq A$.
- 3. α -open set [7] if $A \subseteq int(cl\ (int(A)))$ and α -closed set if $cl\ (int\ (cl\ (A))) \subseteq A$
- 4. semi pre open set [1] if $A \subseteq cl(int(cl(A)))$ and semi pre closed [1] if $int(cl(int(A))) \subseteq A$.
- 5. regular open set [9] if A=int(cl(A)) and a regular closed set if A=cl(int(A)).

III GPR-Compactness in topological spaces.

In this section we study the concept of GPR-compactness and GPR-connectedness using gpr-open sets and studied some of their characterizations.

Definition 3.1: A collection $\{A_i: i \in I\}$ of gpr-open sets in a topological space (X,τ) is called a gpr - open cover of a subset A in (X,τ) if $A \subseteq \bigcup_{i \in I} A_i$ holds.

Definition 3.2 : A topological space (X, τ) is GPR-compact if every gpr-open cover of (X, τ) has a finite subcover.

Definition 3.3: A subset A of a topological space (X,τ) is said to be GPR -compact relative to (X,τ) , if for every collection $\{A_i:i\in I\}$ of gpr-open subsets of gpr-open subsets of (X,τ) such that $A\subseteq\bigcup_{i\in I}A_i$ there exists a finite subset I_0 of I such that $A\subseteq\bigcup_{i\in I}A_i$.

Definition 3.4 : A subset A of a topological space (X,τ) is called GPR-compact if A is GPR-compact of the subspace of (X,τ) .

Theorem 3.5: A gpr -closed subset of a GPR-compact space (X,τ) is GPR -compact relative to (X,τ) .

Proof: Let A be gpr-closed subset of a GPR-compact space X. Then X - A is gpr-open. Let Ω be a gpr-open cover for A. Then $\{\Omega, X - A\}$ is a gpr – open cover for X. Since X is GPR-compact, it has a finite subcover, say, $\{p_1, p_2, ..., p_n\} = \Omega_1$. If $X - A \notin \Omega$, then Ω_1 is a finite subcover of A. If $X - A \in \Omega_1$, then Ω_1 - (X - A) is a sub cover of A. Thus A is a GPR -compact relative to (X, τ) .

Theorem 3.6: The image of a GPR-compact space under GPR-continuous map is compact.

Proof: Let $f: X \to Y$ be gpr-continuous map from a GPR-compact space (X, τ) onto a topological space (Y, μ) . Let $\{A_i : i \in I\}$ be an open cover of (Y, σ) . Since f is gpr-continuous, $\{f^{-1}(A_i) : i \in I\}$ is an gpr-open cover of (X, τ) . Since (X, τ) is GPR-compact, the $\omega\alpha$ -open cover of (X, τ) , $\{f^{-1}(A_i) : i \in I\}$ has a finite subcover say $\{f^{-1}(A_i) : i = 1,...,n\}$. Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$ which implies $f(X) = \bigcup_{i=1}^n A_i$, this implies $Y = \bigcup_{i=1}^n A_i$ that is, $\{A_1, A_2 ... A_n\}$ is a finite subcover of $\{A_i : i \in I\}$ for (Y, μ) . Hence (Y, μ) is compact.

Theorem 3.7 : If a map $f: X \to Y$ is gpr-irresolute and a subset S of X is GPR-compact relative to (X, τ) , then the image f(S) is GPR-compact relative to (Y, σ) .

Proof: Let $\{A_i : i \in I\}$ be a collection of gpr-open sets in (Y, σ) such that $f(S) \subseteq \bigcup_{i \in I} A_i$. Then $S \subseteq \bigcup_{i = I}^n f^{-1}(A_i)$, where $\{f^{-1}(A_i) : i \in I\}$ is gpr-open set in (X, τ) . Since S is GPR-compact relative to (X, τ) , there exist finite subcollections $\{A_1, A_2, ..., A_n\}$ such that $S \subseteq \bigcup_{i = I}^n f^{-1}(A_i)$. That is $f(S) \subseteq \bigcup_{i = I}^n A_i$. Hence f(S) is GPR-compact relative to (Y, σ) .

Definition 3.8 : A topological space (X,τ) is said to be GPR-connected if (X,τ) cannot be written as a disjoint union of two non-empty gpr-open sets.

A subset of (X,τ) is GPR-connected if it is GPR-connected as a subspace.

Theorem 3.9 : For a topological space (X,τ) the following are equivalent

- (i) (X,τ) is GPR-connected.
- (ii) The only subsets of (X, τ) which are both gpr-open and gpr-closed are the empty set ϕ and X.
- (iii) Each gpr-continuous map of (X, τ) into a discrete space (Y, μ) with at least two points is a constant map.

Proof: (i) \Rightarrow (ii) Let G be an gpr-open and a gpr-closed subset of (X,τ) . Then X-G is also both gpr-open and gpr-closed. Then $X=G\cup (X-G)$, a disjoint union of two non-empty gpr-open sets which contradicts to the fact that (X,τ) is GPR-connected. Hence $G=\phi$ or X.

- (ii) \Rightarrow (i) Suppose that $X = A \cup B$ where A and B are disjoint non-empty gpr-open subsets of (X,τ) . Since A = X B then A is both gpr-closed and gpr-open. By assumption $A = \phi$ or X, which is a contradiction. Hence (X, τ) is GPR-connected
- (ii) \Rightarrow (iii) Let $f: (X, \tau) \to (Y, \mu)$ be a gpr-continuous map, where (Y, μ) is discrete space with at least two points. Then $f^1(\{y\})$ is gpr-closed and gpr-open for each $y \in Y$. That is (X, τ) is covered by gpr-closed and gpr-open covering $\{f^1(\{y\}): y \in Y\}$. By assumption, $f^1(\{y\}) = \phi$ or X for each $y \in Y$. If $f^1(\{y\}) = \phi$ for each $y \in Y$, then f fails to be a map. Therefore there exist at least one point say $f^1(\{y\}) \neq \phi$, $y_1 \in Y$ such that $f^1(\{y\}) = X$. This shows that f is a constant map.
- (iii) \Rightarrow (ii) Let G be both gpr-closed and gpr-open in (X, τ) . Suppose $G \neq \emptyset$. Let $f: (X, \tau) \to (Y, \mu)$ is gpr-continuous map defined by $f(G) = \{a\}$ and $f(X G) = \{b\}$ where $a \neq b$ and $a, b \in Y$. By assumption, f is constant and so G = X.

THEOREM 3.10: EVERY GPR-CONNECTED SPACE IS CONNECTED.

Proof: Let (X, τ) be an GPR-connected space. Suppose that (X, τ) is not connected. Then $X = A \cup B$ where A and B are disjoint non-empty open subsets of (X, τ) . Then A and B are gpr-open disjoint sets and $X = A \cup B$ where A and B are disjoint non-empty gpr-open subsets of (X, τ) . This contradicts to the fact that (X, τ) is GPR-connected and so (X, τ) is connected.

The converse of the above theorem need not be true as seen from the following example.

Example 3.11 : Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then (X, τ) is not GPR-connected space but it is connected space because every subset of X is gpr-open. The only clopen sets of X are ϕ , X. Therefore X is connected.

Theorem 3.12 : If $f: (X, \tau) \to (Y, \sigma)$ is gpr-continuous surjection and (X, τ) is GPR-connected, then (Y, σ) is connected.

Proof: Suppose that (Y, σ) is not connected. Let $Y = A \cup B$ where A and B are disjoint non-empty open subsets in (Y, σ) . Since f is gpr-continuous, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint nonempty gpr-open subsets in (X, τ) . This contradicts to the fact that (X, τ) is GPR-connected. Hence (Y, σ) is connected.

Theorem 3.13 : If f: $(X, \tau) \to (Y, \sigma)$ is gpr-irresolute surjection and (X, τ) is GPR-connected, then (Y, σ) is GPR-connected.

Proof: Suppose that (Y, σ) is not GPR-connected. Let $Y = A \cup B$ where A and B are disjoint non-empty gpr-open subsets in (Y, σ) . Since f is gpr-continuous and surjection, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(A)$ ¹(B) are disjoint non-empty gpr-open subsets in (X, τ) . This contradicts to the fact that (X, τ) is GPRconnected. Hence (Y, σ) is GPR-connected.

REFERENCES IV

- [1] **D. Andrijevic**, Semi-pre-open sets, Mat. Vesnik, 38(1) (1986), 24-32.
- Y. Gnanambal On generalized pre-regular closed sets in topological spaces, Indian. J. Pure appl. [2] Math., 28(3) (1997), 351-360.
- [3] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- A. S. Mash hour, M. E. Abd El-Monsef and S. N. EL-Deeb, On pre-continuous and weak pre-[4] continuous mappings, Proc. Math and Phys. Soc. Egypt, 53 (1982), 47-53.
- **H. Maki, R. Devi and K. Balachandran**, Associated topologies of generalized α -closed sets and α [5] -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- **[6]** H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T_{1/2}, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17(1996), 33-42.
- **O. Njastad**, on some classes of nearly open sets, Pacific. J. Math., 15(1965), 961-970. [7]
- M. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2) (1993), [8] 211-219.
- [9] N. V. Velicko, H-closed topological spaces, Mat. Sab. (Russian) (N.S), 70(112)(1966),98-112.